6 3 5 3

Code No.: 12426 AS N/O

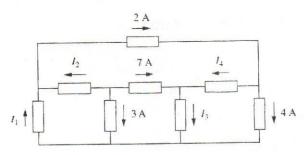
VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

B.E. (E.C.E.) II-Semester Advanced Supplementary Examinations, September-2023 **Basic Circuit Analysis**

Time: 3 hours

Max. Marks: 60


Note: Answer all questions from Part-A and any FIVE from Part-B

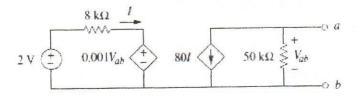
Q. No.	Stem of the question	M	L	CO	DO	DC
1.	Draw the circuits of dependent voltage and current sources.	2	1	1	PO	PS
2.	A stove element draws 15 A, when connected to a 240-V line. Determine the time it takes to consume 180 kJ.	2	1	1	1 2	1
3.	State compensation theorem. Mention its applications.	2	1	2	1	1
4 .	Define Kirchhoff's current and voltage laws.	2	1	2	1	
5.	The ABCD parameters of a reciprocal two port network are given as A =1, B=2 and C=3. Calculate the D parameter.	2	1	3	1	1
6.	Determine the h_{12} parameter from the given two port network equations: $V_1 = 5I_1 + 2I_2$, $V_2 = 2I_1 + I_2$	2	2	3	2	1
7.	Define zero input and zero state response.	2	1	4		
8.	For the circuit shown in Figure, $v = 100 \text{ V}$ and $i = 25 \text{ A}$. Find the value of L and R.	2	2	4	2	1
	i				2	1
9.	Define quality factor of a resonant circuit. Write its significance.					
0.	What are passive filters? Write classification of filters.	2	1	5	1	1
	가셨다는 또 아내는 해서와 마일을 가는 어느 때문에 가지가 들었다. 그래에 환경이 되었다는 때문에 가게 되었다는 그 때문에 되었다.	2	1	5	2	1
. a) (Part-B ($5 \times 8 = 40 \text{ Marks}$)					
	Calculate Io in the circuit shown in below figure, using network eduction techniques.	4	2	1	3	1
	$ \begin{array}{c c} I_o \\ \hline & 20 \Omega \\ \hline & 40 \Omega \\ \hline & 10 \Omega \\ \hline & 20 \Omega \end{array} $					

b) For the circuit shown in figure, use KCL to find the branch currents I₁, I₂, I₃ and I₄.

2

t

2

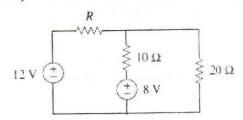

2

4

1

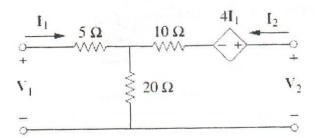
3

12. a) Determine the Thevenin's equivalent at terminals *a-b* of the circuit shown in figure:

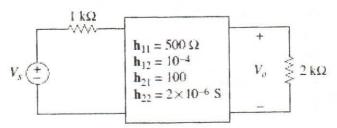

b) Compute the value of R that results in maximum power transfer to the 10Ω resistor shown in figure.

4 3

2


1

Find the maximum power delivered to 10Ω resistor.



13. a) Compute the z- parameters of the circuit shown in figure.

4 3 3 3

Determine Vo/ Vs. for the network shown in the figure,

ra sa an i

3

3

4 1

	a) The switch is opened instantaneously at $t=0$. Find $v(t)$ for $t>0$ in circuit shown in figure	he	4	3	4	1 3	}
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	Consider the circuit shown in figure, Find $V_L(0^+)$, $V_c(0^+)$, $V_L(\infty)$ and	d	4	2	4	3	
	$2u(t) \longrightarrow 0.5 \text{ H} \stackrel{+}{\otimes} \stackrel{+}{\circ}_{L} \qquad 1 \text{ F} \stackrel{+}{\longrightarrow} \stackrel{+}{\circ}_{C} \qquad \stackrel{+}{\longrightarrow} 50 \text{ V}$						
15. a	Prove that RC low pass filter will act as Integrator.						
b	A parallel resonant circuit has $R=100K\Omega$, $L=20mH$ and $C=5nF$. Calculate ω_0 , ω_L , ω_H , Q , and B .		4 1	3	5	4	1
16. a				-	3	3	1
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	4	,
b) 7.	State and prove reciprocity theorem with an example.	4	3		2		
	Answer any two of the following:	7	3		2	3	1
a)	Prove that z- parameters for the overall network are the sum of the z- parameters for the individual networks, when connected in series.	4	3		3	3	1
b)	Find I_1 and I_2 in the circuit shown in figure, using Mesh analysis. $ \frac{10 \Omega}{10 \Omega} = \frac{40 \Omega}{10 \Omega} $	4	2		4	4	1
	$40/30^{\circ} \text{ V} \stackrel{+}{=} \boxed{I_1} \qquad -j20 \Omega \stackrel{+}{=} \boxed{I_2} \qquad \stackrel{\pm}{=} 50/0^{\circ} \text{ V}$						
c)	Oraw the step response of RC high pass filter and derive the expression or output voltage.	4	3	5		2	

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Plane T	e; PO: Program
ii)	Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	20%
iii)	Blooms Taxonomy Level – 2	40%
	rationomy Level – 3 & 4	40%